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Nonautonomous and nonlinear effects in generalized classical oscillators: A boundedness
theorem
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~Received 13 March 2000!

The phenomenon of exponential instability, arising in certain nonautonomous linear oscillators, motivates
the question about the boundedness of amplitude and energy of the oscillators describing many physical
situations. We present a rigorous result ensuring the boundedness for a class of generalized classical oscillators,
characterized by symmetric potentials with only one equilibrium point. The key elements turn out to be the
oscillating nature of the solutions and the presence of an autonomous part in the potential, divergingmore than
quadraticallywith the coordinate.

PACS number~s!: 05.45.2a, 45.50.Dd, 02.30.Hq
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I. INTRODUCTION

By generalizedclassical oscillator, we mean a system~not
necessarily Hamiltonian!, described by a single real degre
of freedomq(t), with first time derivativeq̇(t), moving back
and forth about a stable equilibrium position. Without loss
generality, the equilibrium position can be assumed to be
coordinate origin. Mathematically, the conditions for a sy
tem to be a generalized oscillator read as follows:

The instants$tn% and$tn8% at which q~ tn!50,q̇~ tn8!50

form two unbounded sequences, such that

lim
n→`

tn5 lim
n→`

tn85`. ~1a!

Furthermore,

q~ tn8! andq~ tn118 ! have opposite signs, and

tn8,tn,tn118 for eachn. ~1b!

Properties~1! must be satisfied for all initial conditions ex
cept, at most, for those yielding limt→`q(t)50. Generalized
Hamiltonian oscillators withnonautonomousterms form a
class of nontrivial problems in which the boundedness of
energy is the most important question to be addressed
fact, the asymptotic behavior of their nonconserved ene
may depend in a complicated way on the structure of
equations of motion and on the initial conditions. Typic
examples are thelinear oscillators described by the Hami
tonian

H lin5
p21V2~ t !q2

2
. ~2!

It is well known that the Hamiltonian of Eq.~2! can diverge
exponentiallyin time if the linear frequency is a bounde
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function of time fluctuating without limit. We call this effec
‘‘exponential instability’’ ~EI!. When the fluctuation of
V2(t) is periodic, the EI is known as ‘‘parametric reso
nance’’ @1,2# and occurs if and only if the mean value of th
fluctuation over a period falls into certain intervals~infinite
in number!, depending on the fluctuation period itself. On t
other hand, a bounded butrandom fluctuation always pro-
duces EI for arbitrary amplitudes and independently of a
condition of resonance~exponential localization in one di
mension; see, for instance, Ref.@3#!. This example motivates
the interest in the asymptotic properties of generalized n
autonomous oscillators, with special reference to the bou
edness properties.

If it can be done, the construction of aninvariant function
of momentum, coordinate, and time is the best possible
proach to the exact integration of the equation of motio
Important results have been obtained@4,5# by expanding the
invariants in series of recursively connected terms. Howe
the asymptotic properties of those series are in general
known, so that the boundedness of the solutions is usuall
open question. The present method does not require the
of invariants.

In Sec. II, we studynonautonomous symmetricHamilto-
nians of the form

~3a!

with equation of motion

~3b!

under the conditions

Wt~q2,t !; ]q2Wt~q2,t !; Waut~q2!;

]q2Waut~q2!>0 ;t,q, ~4a!

lim
q2→`

Waut~q2!

q2
51`, ~4b!

F~q,t !50⇒q50, ~4c!
R3039 ©2000 The American Physical Society
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Wt~0,t !bounded. ~4d!

Conditions ~4! mean that the potential energy is no
negative, with anautonomousterm diverging more rapidly
thanq2, and withonly oneequilibrium position inq located
at q50. In addition, the zero-point potential energy of t
nonautonomous part must be a bounded function of the ti
By means of conditions~4a! and ~4c!, it can be easily seen
that the solutions of Eq.~3b! do actually satisfy the condi
tions ~1! for the system to be a generalized oscillator. W
prove the following theorem:

~i! Under conditions~4!, q(t), q̇(t), and Hgen(t) are
bounded.

In proving Theorem~i!, it will be seen that condition~4b!
plays a special role:

~ii ! If the other conditions~4! are satisfied, an (autono
mous, attractive) force divergingmore than linearlywith the
coordinate issufficient for boundedness.

II. BOUNDEDNESS THEOREM

The main difficulty with Theorem~i! is the complicated
interplay between the rapid oscillations and the smooth
erage trend of the solutions~what we call the ‘‘envelope’’!
that determines the boundedness properties. Other au
have faced the same difficulty with different methods@2,6#.
In particular, the boundedness has been proven by Diec
hoff and Zehnder~DZ! in Ref. @7#, via the so-called ‘‘twist
theorem,’’ for the equation of motion

q̈1q2m111(
j 50

2m

a j~ t !qj50; a j~ t1t!5a j~ t !, ~5!

with time-periodic coefficients and integer powers of the c
ordinate. The elegant method of Ref.@7# makes use of a
formalism that might look rather sophisticated to nonspec
ists in dynamical systems. The present approach is more
ementary and a little bit more flexible, since we can gen
alize the boundedness theorem to nonperiodic cases an
noninteger powers as well. However, our Hamiltonian~3a! is
symmetric by definition and has only one equilibrium po
tion, q50. In this sense the case studied by DZ is mo
general.

Our approach is based on properties~1!, characterizing
the generalized oscillators. Let us introduce the so-ca
action-angle variables (f,J), and apply the canonical trans
formation:

~q,p!→~f,J!; q5A2Jcosf, p52A2Jsinf. ~6!

We prove the following statement:

If properties~1! apply and q~ t ! is assumed to be unbounde

then q̇~ t !5p~ t !diverges with the same envelope as q~ t !. ~7!

In fact, it is clear from Eq.~6! that J(t) is strictly positive,
otherwiseJ(t)50 for eacht. This is because Eq.~3b! en-
sures thatq(t)50 ;t is a solution of the problem. In addi
tion, J(t) must contain any~eventually! diverging envelope
of the squared solution and of its squared first derivati
e.
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given thatq̇5p. Therefore, the only possibility for, say,q̇2

to diverge in envelope more rapidly thanq2, would be

lim
t→`

cos2f~ t !50⇒ lim
t→`

sin2f~ t !51~wrong!. ~8!

From the second Eq.~8!, it follows that there should exist a
time t̂ and a positive numberd,1 such that

sin2f~ t !>d.0 ;t. t̂ ~wrong!. ~9!

On squaring the second Eq.~8!, the strict positiveness ofJ(t)
and of sin2f(t) would imply that q̇2(t)5p2(t) is in turn
strictly positive for t. t̂ . This violates the condition~1a!,
which proves that the envelope ofq̇(t) divergesat mostas
q(t) for any oscillator such thatq̇5p. The same reasoning
can be applied to show thatq(t) diverges in envelope a
most asq̇(t). The only difference in the proof is exchangin
the two trigonometric functions in Eq.~8! with each other.

For the last step of the theorem, we use the Hamil
equation for the energy itself@Eq. ~3a!#:

Ḣgen~ t !5] tWt~q2,t !, ~10!

and write Eq.~3b! in the equivalent form,

q̇252E
t i

t

] t8Wtdt822Wt~q2,t !22Waut~q2!12Ei ,

~11!

whereEi is the energy at the initial instantt i . In each point
of the sequences$tn% and$tn8%, defined by properties~1!, Eq.
~11! yields

q̇2~ tn!52E t i
tn] tWt~q2,t !dt22Wt~0,tn!22Waut~0!12Ei ,

~12a!

052E
t i

tn8] tWt~q2,t !dt22Wt„q
2~ tn8!,tn8…

22Waut„q
2~ tn8!…12Ei . ~12b!

The integral on the rhs of Eq.~12b! can be expressed in
terms of Eq.~12a!, which yields

q̇2~ tn!22E
tn8

tn
] tWt~q2,t !dt12Wt~0,tn!12Waut~0!

22Wt„q
2~ tn8!,tn8…22Waut„q

2~ tn8!…50. ~13a!

On setting] tWt5Ẇt22(]q2Wt)qq̇ into the integral on the
lhs of Eq.~13a!, then dividing byq2(tn8), one gets

q̇2~ tn!

q2~ tn8!
1

4

q2~ tn8!
E

tn8

tn
~]q2Wt!qq̇dt

22
Waut„q

2~ tn8!…

q2~ tn8!
12

Waut~0!

q2~ tn8!
50. ~13b!
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By definition @property~1a!#, q2(tn8) are the relativemaxima
of q2(t). Hence, ifq2(t) is assumed to diverge in envelop
there exist two unbounded subsequences$ t̂ n8%,$tn8%,

$ t̂ n%,$tn%, such that

lim
n→`

q2~ t̂ n8!51`~wrong!, ~14!

and

F q̇2~ t̂ n!

q2~ t̂ n8!
Gbounded, ~15!

as implied by property~7!. From the conditions~4a! and~4b!
and from Eq.~14! it follows that the third term on the lhs o
Eq. ~13b! should divergenegatively and the fourth term
should vanish forn→`, whentn8 is replaced byt̂ n8 . Further-
more, Eq.~15! ensures that the first term is bounded. The
fore, the only possibility for Eq.~13a! to be satisfied asymp
totically would be

lim
n→`

4

q2~ t̂ n8!
E

t̂ n8

t̂ n
~]q2Wt!qq̇dt51`~wrong!. ~16!

However, in each interval@ t̂ n8 , t̂ n#, the functionq(t)q̇(t) is
manifestlynonpositive. In fact, due to property~1b!, in such
intervalsq(t) increases~decreases! from a relativenegative

minimum ~positivemaximum! to zero. Henceq(t) and q̇(t)
have necessarily opposite signs in@ t̂ n8 , t̂ n#. Since]q2Wt is
non-negative by definition@condition ~4a!#, the lhs of Eq.
~16! turns out to be negative. It is thus proven by reduction
the absurd thatq(t) and q̇(t) are both bounded. Conditio
~4d! completes the boundedness Theorem~i!.

At this stage, it is useful to discuss the hypothesis
Theorem~i! on a more physical ground. The crucial poin
for the boundedness are the oscillating nature of the solut
and the presence of anautonomoustermWaut diverging more
than quadratically with the coordinate@condition ~4b!#.
Should this term be eliminated, the third term on the lhs
Eq. ~13b! would disappear in turn, and the next argume
would not apply anymore. Thus, the presence ofWaut satis-
fying condition~4b! is asufficientcondition for boundednes
@statement~ii !#. In contrast to the DZ approach@7#, there is
no need here to assume thatWaut is themost divergingterm.

III. CONCLUSIONS

The present Rapid Communication clarifies some asp
of the interplay between nonautonomous andnonlinear ef-
fects in generalized oscillators, with special reference to
,
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boundedness~or stability! problem. This is especially rel
evant for a wide class of physical problems, whose origin
the exponential instability~EI! of certain linear oscillators
@Eq. ~2!#. Just to give a few examples, we mention here:
problem of the stability of beams in accelerators@8–12#, the
confinement of charged particles~Paul traps @13#!, the
squeezing effects in quantum optics@14–17#, and acoustics
@6#. In all these cases, Eq.~2! represents an approximation
neglecting higher-order nonlinear effects, that are unavo
able in practical applications. As far as Eq.~2! is concerned,
we stress that therandomlyfluctuating frequency is a par
ticularly intriguing case. On one hand, it seems to outline
solution of a long-standing technological problem, i.e., us
the environment as an infinite source of randomly fluctuat
energy, to be extracted and concentrated in a controlla
system. On the other hand, the same effect will sound ala
ing, in some circumstances. For example, the energy of
transversal modes of an elastic bar, under the action of
gitudinal time-varying forces~ @2#, Chapter 17! is just deter-
mined by Eq.~2!. In this case the fluctuating part ofV2(t) is
proportional to the longitudinal force. As a structural part
a vehicle or a building, a bar can be influenced by rando
varying forces, even in quite normal conditions. The con
quences should be always~or could have been, sometime!
catastrophic, if some contrasting mechanisms did not s
press the EI. Statement~ii ! addressed the nonlinearity as a
important mechanism contrasting the EI@18#. The present
communication should stimulate aquantitative analysison
the ability of the nonlinear effects to suppress the EI, un
realistic ~though extreme! physical conditions. To our
knowledge, this problem was presumably addressed long
@19# for the structural stability of aircraft, in the case ofpara-
metric resonance~periodical fluctuations!. It is not clear,
however, if the same question has been considered in
case ofrandomfluctuations too, in more recent times. If th
wasnot the case, the present communication should soun
an alarm bell for engineers and technologists.

In a forthcoming paper, we will go beyond the bounde
ness theorem proven above, by studying the classical Ha
tonian

H5
p21V2~ t !q2

2
1

a

g
uqug; g.2, ~17!

as a special case of Eq.~3a!, satisfying conditions~4!. The
interplay between EI and nonlinearity is expressed by
~17! in the simplest possible form. Indeed, if the quadra
part is exponentially unstable, the low-energy dynamics
sulting from the nonlinear terms exhibits a very rich stru
ture, including acritical transition, driven by the initial en-
ergy of the generalized oscillator.
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